Hits:
Indexed by:期刊论文
Date of Publication:2010-12-01
Journal:JOURNAL OF COMPUTATIONAL CHEMISTRY
Included Journals:SCIE
Volume:31
Issue:16
Page Number:2853-2858
ISSN No.:0192-8651
Key Words:dihydrogen bonding; time-dependent density functional theory; electronically excited state; infrared spectra
Abstract:Intermolecular dihydrogen bond O-H center dot center dot center dot H-Ge in the electronically excited state of the dihydrogen-bonded phenol-triethylgermanium (TECH) complex was studied theoretically using time-dependent density functional theory. Analysis of the frontier molecular orbitals revealed a locally excited S(1) state in which only the phenol moiety is electronically excited. In the predicted infrared spectrum of the dihydrogen-bonded phenol-TEGH complex, the O-H stretching vibrational mode shifts to a lower frequency in the S(1) state in comparison with that in ground state. The Ge-H stretching vibrational mode demonstrates a relatively smaller redshift than the O-H stretching vibrational mode. Upon electronic excitation to the S(1) state, the O-H and Ge-H bonds involved in the dihydrogen bond both get lengthened, whereas the C-O bond is shortened. With an increased binding energy, the calculated H center dot center dot center dot H distance significantly decreases in the S(1) state. Thus, the intermolecular dihydrogen bond O-H center dot center dot center dot H-Ge of the dihydrogen-bonded phenol-TEGH complex becomes stronger in the electronically excited state than that in the ground state. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2853-2858, 2010
Pre One:Role of the intermolecular and intramolecular hydrogen bonding on the excited-state proton transfer behavior of 3-aminophthalimide (3AP) dimer
Next One:Time-dependent density functional theory study on the coexistent intermolecular hydrogen-bonding and dihydrogen-bonding of the phenol-H2O-diethylmethylsilane complex in electronic excited states