![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:南开大学
学位:博士
所在单位:化工学院
电子邮箱:haoce@dlut.edu.cn
Investigation of SO2 gas adsorption in metal-organic frameworks by molecular simulation
点击次数:
论文类型:期刊论文
发表时间:2014-08-01
发表刊物:INORGANIC CHEMISTRY COMMUNICATIONS
收录刊物:SCIE
卷号:46
页面范围:277-281
ISSN号:1387-7003
关键字:Metal-organic frameworks; SO2 gas; Gas adsorption; Molecular simulation
摘要:Sulfur dioxide (SO2) is responsible for the formation of acid rain and many other undesirable environmental and health hazards. Therefore, the capture or separation of sulfur dioxide is an important gas treatment process in industry. In this study, we predicted the adsorption of SO2 in ten metal-organic frameworks (MOFs), and investigated the effects of heat of adsorption, free volume, and surface area on sulfur dioxide uptake using grand canonical Monte Carlo simulations over a wide range of pressures. The molecular simulations of the SO2 adsorption isotherms in the MOP materials revealed that having high SO2 adsorption capacity and a suitable pore size greater than 0.4 nm is essential. In this pore size range, at low pressures the amount of SO2 adsorbed in these MOP materials is correlated with the heat of adsorption. Furthermore, at moderate pressures the amount of SO2 adsorbed is not well-correlated with the free volume and the accessible surface area, but the free volume and surface area are still clearly important characteristics in evaluating any potential SO2 absorption and storage absorbent. In addition, it was found that MOFs show higher SO2 storage capacity than most hydrotalcite-like materials at low pressure. This result suggests that MOF materials have potential as sulfur-transfer catalysts in industry. (C) 2014 Elsevier B.V. All rights reserved.