Doctoral Degree
Dalian University of Technology
Gender:Female
Business Address:School of Infrastructure Engineering,DUT
Room 218, Haiyu Building
No.2 Linggong Road, Gaoxinyuan District
Dalian, P.R.China (116024)
E-Mail:minglic@dlut.edu.cn
Indexed by:期刊论文
Date of Publication:2018-04-01
Journal:MATERIALES DE CONSTRUCCION
Included Journals:SCIE
Volume:68
Issue:330
ISSN No.:0465-2746
Key Words:Composite; Microcracking; Calcium carbonate; Compressive strength;
Flexural strength
Abstract:Nowadays researchers are developing a new hybrid fiber reinforced cement-based composites (HyFRCC). The new HyFRCC can restrain micro-cracking, improves compressive and flexural performance of beams by addition of calcium carbonate (CaCO3) whisker, polyvinyl alcohol (PVA) fiber and steel fiber. In this work, a mix optimization procedure is shown for multi-scale HyFRCC, with steel, PVA fiber and CaCO3 whisker. The new HyFRCC is explored with addition of coarse sand to further improve its mechanical properties. Additionally, the flexural performance of beam and slabs has been investigated to optimize sand gradation and fiber combination in new HyFRCC. The compressive strength, flexural strength, flexural behavior, flexural toughness, equivalent flexural strength and deflection-hardening behavior of beams and slabs are improved with optimized content of sand gradation, fibers and CaCO3 whisker. The HyFRCC slab with 1.5% steel fiber, 0.4% PVA fiber, 1% CaCO3 whisker and optimized coarse sand showed overall best properties.