LI JIE
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:电气工程学院
Discipline:Environmental Engineering. Theory and New Technology of Electrical Engineering. High Voltage and Insulation Technology
Business Address:大连理工大学电气工程学院静电所
Hits:
Indexed by:期刊论文
Date of Publication:2017-03-01
Journal:WATER AIR AND SOIL POLLUTION
Included Journals:SCIE、EI
Volume:228
Issue:3
ISSN No.:0049-6979
Key Words:Non-thermal plasma; VOCs; Plasma-catalysis process; DBD plasma
Abstract:In this study, the degradation of benzene by the means of an optimized surface/packed-bed hybrid discharge (SPBHD) plasma combined with gamma-Al2O3-supported MOx (M = Ag, Mn, Cu, or Fe) catalysts in post plasma-catalysis (PPC) system. The effects of Ag loading amount and gas hourly space velocity (GHSV) for plasma-catalysis degradation of benzene have been systematically investigated. The experimental result showed that the benzene degradation was improved and the mineralization process was greatly enhanced towards total oxidation after the combination of plasma with all MOx/gamma-Al2O3 catalysts. The AgOx/gamma-Al2O3 catalyst exhibited the best catalytic activity in benzene degradation than the other catalysts in PPC system. The highest benzene degradation efficiency of 96% and COx selectivity of 99% can be obtained for AgOx/gamma-Al2O3 catalyst with optimum Ag loading amount and GHSV of 15% and 22,856 h(-1), respectively. Time course of benzene degradation during PPC process indicated that the plasma-induced catalytic activity of AgOx/gamma-Al2O3 catalyst was temporary rather than lasting over a period after the plasma off. FT-IR analysis results revealed that the intermediate products (such as CO, HCOOH) and unwanted by-products (O-3 and NOx) generated in plasma process could be significantly inhibited by PPC process with AgOx/gamma-Al2O3 catalyst.