LI JIE
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:电气工程学院
Discipline:Environmental Engineering. Theory and New Technology of Electrical Engineering. High Voltage and Insulation Technology
Business Address:大连理工大学电气工程学院静电所
Hits:
Indexed by:期刊论文
Date of Publication:2019-01-01
Journal:PLASMA CHEMISTRY AND PLASMA PROCESSING
Included Journals:SCIE、Scopus
Volume:39
Issue:1
Page Number:227-240
ISSN No.:0272-4324
Key Words:VOCs degradation; Pulsed discharge plasma; Sliding DBD; Three-electrode configuration; Plasma reactor optimization
Abstract:The degradation of toluene by non-thermal plasma has been evaluated in a continuous-flow sliding dielectric barrier discharge (SLDBD) reactor based on three-electrode configuration and compared with a traditional surface dielectric barrier discharge reactor. In order to optimize the electrical and geometry parameters of the SLDBD reactor, the effects of positive pulsed high-voltage (U+pulse), negative DC voltage (U-DC), pulse-forming capacitance (C-p)), inter-electrode gap, discharge length, and dielectric material have been systematically investigated. Morphological characterizations demonstrate that the steamer channels can propagate more homogeneously along the dielectric surface when a sufficient U-DC is applied under the condition of slight increase in energy. The average discharge power of the SLDBD reactor mainly depends on U+pulse, while which is less affected by U-DC. Unexpectedly, both toluene degradation efficiency and energy yield using the SLDBD increase significantly as U-DC, indicating that VOC degradation is not only determined by the energy primarily provided by U+pulse, but also depends on the drift of the ionized species induced by U-DC. Increasing C-p enhances the energy injected into the SLDBD reactor and leads to a higher toluene degradation efficiency, but lowers the energy yield when the other parameters remains unchanged. The optimal C-p is 0.67nF. Shorter inter-electrode gap and longer discharge length appear to be more advantageous in terms of toluene degradation and energy yield. Quartz plate exhibits remarkably better degradation and energy performance than ceramic and polytef ones, leading to the maximum toluene degradation efficiency of 58% and energy yield of 0.85g/kWh in this work.