LI JIE
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:电气工程学院
Discipline:Environmental Engineering. Theory and New Technology of Electrical Engineering. High Voltage and Insulation Technology
Business Address:大连理工大学电气工程学院静电所
Hits:
Indexed by:期刊论文
Date of Publication:2009-02-01
Journal:CHEMICAL ENGINEERING JOURNAL
Included Journals:SCIE、EI
Volume:146
Issue:2
Page Number:168-173
ISSN No.:1385-8947
Key Words:Dielectric barrier discharge; Granular activated carbon; Acid orange 7; Functional groups; Adsorption kinetics; Adsorption equilibrium isotherms
Abstract:A novel process for regenerating activated carbon based on high active species (O(3), (center dot)OH, (center dot)HO(2), (center dot)O(2) and RO, etc.) generated by dielectric barrier discharge (DBD) oxidation was proposed. The method was assayed with granular activated carbon (GAC) exhausted with azo dye acid orange 7. The regeneration efficiency of this technique was evaluated, and the regeneration efficiencies could reach over 73% after five continuous regeneration cycles. The effects of DBD on the adsorption rate, the texture characteristic, the surface chemistry, and the adsorption capacity of GAC samples after different regeneration cycles were investigated. The adsorption rate remained stable after multi-successive regeneration cycles. The analysis of texture of GAC samples showed that the specific surface area and pore volume decreased after DBD regeneration cycles except for the first regeneration sample. It was observed that DBD also resulted in the increase of carboxylic functional groups of GAC's surface. Furthermore, all adsorption equilibrium isotherms fitted the Freundlich model fairly well, which demonstrated DBD plasma did not appear to modify adsorption process but to shift the equilibrium towards lower adsorption concentrations. (C) 2008 Elsevier B.V. All rights reserved.