个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:电气工程学院
学科:环境工程. 电工理论与新技术. 高电压与绝缘技术
办公地点:大连理工大学电气工程学院静电所
Characterization of a novel volume-surface DBD reactor: discharge characteristics, ozone production and benzene degradation
点击次数:
论文类型:期刊论文
发表时间:2020-02-06
发表刊物:JOURNAL OF PHYSICS D-APPLIED PHYSICS
收录刊物:EI、SCIE
卷号:53
期号:6
ISSN号:0022-3727
关键字:surface DBD; hybrid volume-surface DBD; plasma distribution; ozone; VOCs treatment
摘要:Surface dielectric barrier discharge (SDBD) is very efficient for the production of reactive species to degrade gaseous pollutants, but the streamer propagation only along the dielectric surface limits the gas treatment capacity. In our experiments, an additional ground electrode pasted on a dielectric was arranged over the surface electrode to form a hybrid volume-surface DBD (V-SDBD) configuration for enlarging the spatial distribution of discharge plasma. The current waveforms, discharge images and power measurements indicate that the V-SDBD configuration produced more steamer channels and induced the development of discharge filaments towards the air gap, leading to more production of ozone and higher benzene degradation efficiency compared to SDBD configuration. At the conditions of 16 kV applied voltage, 2.8 mm air gap spacing and 1 l min-1 air flow rate, the ozone concentration and benzene degradation efficiency of V-SDBD configuration were 3.45 times and 2.15 times that of SDBD configuration, respectively, which may be contributed to the enhanced electric discharge and the enlarged spatial plasma distribution in V-SDBD device compared to SDBD device.