Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
周一卉

Associate Professor
Supervisor of Master's Candidates


Gender:Female
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Chemical Engineering
Discipline:Safety Science and Engineering. Chemical Process Equipment
Business Address:Room H403,West Dist.,DUT
Contact Information:13500780440
E-Mail:zflower@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Numerical simulation of double-phase coupled heat transfer process of horizontal-tube falling film evaporation

Hits : Praise

Indexed by:期刊论文

Date of Publication:2017-05-25

Journal:APPLIED THERMAL ENGINEERING

Included Journals:SCIE、EI、Scopus

Volume:118

Page Number:33-40

ISSN No.:1359-4311

Key Words:Horizontal-tube falling film evaporation; Double-phase coupled heat transfer; Film thickness; Heat transfer coefficient; Spray density

Abstract:The double-phase coupled heat transfer process plays an important role in the horizontal-tube falling film evaporation. The method of element sliced out of tube was presented and the continuous double phase transformation was represented by the discrete mass fraction of steam in the tube. The model of the double-phase coupled heat transfer of the horizontal-tube falling film evaporation was built up to simulate the process of coupling heat-transfer process inside and outside tube. The Volume of Fluid (VOF) method was applied to investigate the influence of the spray density on the distributions of the film thickness and the circumferential and axial heat transfer coefficient of horizontal-tube. The computation results showed that the circumferential film thickness changed constantly. The minimum film thickness appeared approximately at the angular positions of 100-140 degrees. And dry spot would form at the bottom of the horizontal-tube. The external film heat transfer coefficient of circumferential horizontal tube gradually decreased. In the axial direction the overall heat transfer coefficient was mainly impacted by the internal film heat transfer coefficient, which was improved with the increasing of water vapor condensation and not sensitive to the spray density. (C) 2017 Elsevier Ltd. All rights reserved.