个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 大连理工大学水利系主任、海岸和近海工程国家重点实验室副主任、辽宁省工程防灾减灾重点实验室副主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:水工结构工程. 防灾减灾工程及防护工程. 岩土工程
联系方式:zoudegao@dlut.edu.cn
电子邮箱:zoudegao@dlut.edu.cn
Seismic cracking evolution for anti-seepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame
点击次数:
论文类型:期刊论文
发表时间:2020-06-01
发表刊物:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
收录刊物:SCIE
卷号:133
ISSN号:0267-7261
关键字:Concrete faced rockfill dam; Slab cracking; Cohesive zone model; Elasto-plastic analysis; Explicit analysis
摘要:It is critically importance to accurately locate vulnerable areas and quantitatively assess the damage of the face slab in the seismic safety evaluation of concrete faced rockfill dams (CFRDs). In this paper, the cohesive zone model (CZM) is augmented with generalized plastic models of the rockfill and state-dependent elasto-plastic model of the interface to investigate the seismic cracking evolution in the slab of CFRDs. An explicit coupled scaled boundary finite element method-finite element method (Explicit SBFEM-FEM) is developed to enable cross-scale analysis. The method considers the strain softening of rockfill and concrete after being damaged, and avoids negative stiffness and convergence problems that can be found during implicit analysis. A fine, cross-scale model of the CFRD is established based on the quadrature technique. Subsequently, simulations of the construction and impoundment processes are performed to facilitate dynamic analysis. In the first step, different damping ratios for the slab are simulated to optimize accuracy and efficiency. Then, the seismic cracking evolution of the slab is investigated in detail with consideration to the ground motion intensity and steel reinforcement. The results indicate that the computational efficiency can be significantly improved by decreasing the damping ratio of the concrete face slab in the explicit seismic analysis. Penetrating cracks are observed on the slab and the crack reaches maximum width during the earthquake. A residual width is retained after the earthquake. The simulated failure mode of face slab conforms to the characteristics of concrete. The developed method can help precisely locate weak areas of face slab, quantitatively determine the damage severity, and evaluate the ultimate seismic performance of the slab in the CFRDs. In addition, the method can be further employed for concrete cracking analysis involving soil-concrete interaction.