邹德高

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 大连理工大学水利系主任、海岸和近海工程国家重点实验室副主任、辽宁省工程防灾减灾重点实验室副主任

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水工结构工程. 防灾减灾工程及防护工程. 岩土工程

联系方式:zoudegao@dlut.edu.cn

电子邮箱:zoudegao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model

点击次数:

论文类型:期刊论文

发表时间:2012-06-01

发表刊物:COMPUTERS AND GEOTECHNICS

收录刊物:SCIE、EI

卷号:43

页面范围:143-154

ISSN号:0266-352X

关键字:Generalized plasticity; Concrete face rockfill dam; Rockfill-slab interface; Construction; Settlement

摘要:Concrete face rockfill dams (CFRDs) are becoming a widely used type of rockfill dam in China. In many cases, the design and construction of CFRDs are based primarily on precedent and engineering judgments. Few numerical or analytical methods have been developed to properly evaluate the deformation of CFRDs, which is important for dam safety and for subsequent evaluation of seismic performance. In this study, a finite element procedure was developed to simulate the construction process of a CFRD, using the Zipingpu CFRD in China as an illustrative example. The Zipingpu dam was subjected to a strong earthquake in 2008, and can be used as a benchmark problem to assess the safety of CFRD. It is thus important to the engineering community to establish the state of stress-strain in the dam prior to the earthquake. A generalized plasticity model was modified to better model the rockfill materials, and the interfaces between face slabs and cushions are modeled using zero-thickness interface elements that follow a hyperbolic stress-strain model in the tangential direction. The model parameters were calibrated by large-scale triaxial tests and direct shear tests performed on materials used in the dam. The step-by-step construction followed by subsequent impounding of the reservoir was simulated in the numerical procedure. The numerical results agree well with in situ monitoring records of dam settlements, indicating that a three-dimensional finite element procedure based on a modified generalized plasticity model and a hyperbolic interface model can be used to evaluate the deformation of CFRDs. (C) 2012 Elsevier Ltd. All rights reserved.