• 更多栏目

    陈硕

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境工程. 环境科学
    • 办公地点:大连理工大学环境学院B717
    • 联系方式:0411-84706263
    • 电子邮箱:shuochen@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Carbon-nanotube-based sandwich-like hollow fiber membranes for expanded microcystin-LR removal applications

    点击次数:

    论文类型:期刊论文

    发表时间:2017-07-01

    发表刊物:CHEMICAL ENGINEERING JOURNAL

    收录刊物:SCIE、EI

    卷号:319

    页面范围:212-218

    ISSN号:1385-8947

    关键字:Membrane; Electrochemical oxidation; Carbon nanotube; Adsorption; Microcystin-LR

    摘要:The worldwide presence of harmful micropollutants in water resources drives the development of innovative and energy-efficient water treatment technologies. Herein, a novel carbon-nanotube-(CNT)-based hollow fiber membrane, with a sandwich-like structure in its cross section, is designed and prepared for expanded micropollutant removal under electrochemical assistance. The CNT membranes consist of (1) outer CNT layer as separation layer, (2) middle porous polyvinylidene fluoride layer and (3) inner CNT layer as support. Apart from their intrinsic functions as separation membranes, they can construct a complete electrochemical system, in which two CNT layers are also designed as electrodes and the PVDF layer as insulating separator. Low-concentration microcystin-LR can be cost-efficiently and continuously removed (>99.8%) by these CNT ultrafiltration membranes through facile switches between adsorption and desorption/electrochemical oxidation. Such switches can be achieved at a high flux of 500 L m(-2) h(-1) without terminating filtration process. Degradation product analysis has evidenced the breaking of Mdda chains that are largely responsible for the toxicity of microcystins. This work synergistically combines adsorption and electrochemistry with membrane separation, and highlights their potentials for advanced wastewater treatment and drinking water purification. (C) 2017 Elsevier B.V. All rights reserved.