陈硕
开通时间:..
最后更新时间:..
点击次数:
论文类型:期刊论文
发表时间:2015-03-21
发表刊物:ANALYST
收录刊物:PubMed、SCIE、Scopus
卷号:140
期号:6
页面范围:2029-2036
ISSN号:0003-2654
摘要:An ultrasensitive methodology was successfully developed for the quantitative detection of picomolar Hg2+ based on the combination of thymine-Hg2+-thymine (T-Hg2+-T) coordination chemistry and exonuclease III-aided recycling signal amplification. Single-strand probe DNA was immobilized on an Au electrode via an Au-S bond. In the presence of Hg2+, the probe DNA hybridized with the target DNA containing four thymine-thymine (T-T) mismatches via the Hg2+-mediated coordination of T-Hg2+-T base pairs. Then the probe DNA in the DNA duplex was specifically recognized and selectively digested by exonuclease III; in contrast the target DNA was safely dissociated from the DNA duplexes to subsequently hybridize with a new signal probe, leading to target recycling and signal amplification. As a result, the peak current caused by the electrostatic interactions of [Ru(NH3)(6)](3+) cations with the backbone of the probe DNA decreased by different degrees, corresponding to the Hg2+ concentrations. Under the optimum conditions, the proposed electrochemical DNA biosensor showed a robust detection limit as low as 1 pM (S/N = 3), with a wide linear range from 0.01 to 500 nM and good selectivity. In addition, the proposed method was successfully applied to assay Hg2+ in real environmental samples.