• 更多栏目

    陈硕

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境工程. 环境科学
    • 办公地点:大连理工大学环境学院B717
    • 联系方式:0411-84706263
    • 电子邮箱:shuochen@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment

    点击次数:

    论文类型:期刊论文

    发表时间:2015-12-15

    发表刊物:JOURNAL OF HAZARDOUS MATERIALS

    收录刊物:SCIE、EI、PubMed、Scopus

    卷号:299

    页面范围:27-34

    ISSN号:0304-3894

    关键字:Photoelectrocatalysis; Membrane; TiO2; Carbon; Water treatment

    摘要:Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO2/carbon/Al2O3 membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO2 nanoparticles layer with photocatalytic activity on Al2O3 membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone. (C) 2015 Elsevier B.V. All rights reserved.