个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:英国牛津大学数学所
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:wuweiw@dlut.edu.cn
SPARSE REPRESENTATION LEARNING OF DATA BY AUTOENCODERS WITH L-1/2 REGULARIZATION
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:NEURAL NETWORK WORLD
收录刊物:SCIE
卷号:28
期号:2
页面范围:133-147
ISSN号:1210-0552
关键字:autoencoder; sparse representation; unsupervised feature learning; deep network; L-1/2 regularization
摘要:Autoencoder networks have been demonstrated to be efficient for unsupervised learning of representation of images, documents and time series. Sparse representation can improve the interpretability of the input data and the generalization of a model by eliminating redundant features and extracting the latent structure of data. In this paper, we use L-1/2 regularization method to enforce sparsity on the hidden representation of an autoencoder for achieving sparse representation of data. The performance of our approach in terms of unsupervised feature learning and supervised classification is assessed on the MNIST digit data set, the ORL face database and the Reuters-21578 text corpus. The results demonstrate that the proposed autoencoder can produce sparser representation and better reconstruction performance than the Sparse Autoencoder and the L-1 regularization Autoencoder. The new representation is also illustrated to be useful for a deep network to improve the classification performance.