个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:英国牛津大学数学所
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:wuweiw@dlut.edu.cn
Group L-1(/2) Regularization for Pruning Hidden Layer Nodes of Feedforward Neural Networks
点击次数:
论文类型:期刊论文
发表时间:2019-01-01
发表刊物:IEEE ACCESS
收录刊物:SCIE
卷号:7
页面范围:9540-9557
ISSN号:2169-3536
关键字:Feedforward neural networks; pruning hidden layer nodes and weights; group L-1(/2); smooth group L-1/2; group lasso; convergence
摘要:A group L-1(/2) regularization term is defined and introduced into the conventional error function for pruning the hidden layer nodes of feedforward neural networks. This group L-1(/2) regularization method (GL(1/2)) can prune not only the redundant hidden nodes but also the redundant weights of the surviving hidden nodes of the neural networks. As a comparison, the popular group lasso regularization (GL(2)) can prune the redundant hidden nodes, but cannot prune any redundant weights of the surviving hidden nodes, of the neural networks. A disadvantage of the GL(1/2) is that it involves a non-smooth absolute value function, which causes oscillation in the numerical computation and difficulty in the convergence analysis. As a remedy, the absolute value function is approximated by a smooth function, resulting in a smooth group L-1(/2) regularization method (SGL(1/2)). Numerical simulations on a few benchmark data sets show that, compared with GL(2), SGL(1/2) can achieve better accuracy and remove more redundant nodes and weights of the surviving hidden nodes. A convergence theorem is also proved for SGL(1/2).