吴微

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:英国牛津大学数学所

学位:博士

所在单位:数学科学学院

学科:计算数学

电子邮箱:wuweiw@dlut.edu.cn

扫描关注

论文成果

当前位置: 吴微 >> 科学研究 >> 论文成果

Boundedness and Convergence of Online Gradient Method with Penalty for Linear Output Feedforward Neural Networks

点击次数:

论文类型:期刊论文

发表时间:2009-06-01

发表刊物:NEURAL PROCESSING LETTERS

收录刊物:SCIE、EI、Scopus

卷号:29

期号:3

页面范围:205-212

ISSN号:1370-4621

关键字:Feedforward neural networks; Linear output; Online gradient method; Penalty; Boundedness; Convergence

摘要:This paper investigates an online gradient method with penalty for training feedforward neural networks with linear output. A usual penalty is considered, which is a term proportional to the norm of the weights. The main contribution of this paper is to theoretically prove the boundedness of the weights in the network training process. This boundedness is then used to prove an almost sure convergence of the algorithm to the zero set of the gradient of the error function.