![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:英国牛津大学数学所
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:wuweiw@dlut.edu.cn
Boundedness and Convergence of Online Gradient Method with Penalty for Linear Output Feedforward Neural Networks
点击次数:
论文类型:期刊论文
发表时间:2009-06-01
发表刊物:NEURAL PROCESSING LETTERS
收录刊物:SCIE、EI、Scopus
卷号:29
期号:3
页面范围:205-212
ISSN号:1370-4621
关键字:Feedforward neural networks; Linear output; Online gradient method; Penalty; Boundedness; Convergence
摘要:This paper investigates an online gradient method with penalty for training feedforward neural networks with linear output. A usual penalty is considered, which is a term proportional to the norm of the weights. The main contribution of this paper is to theoretically prove the boundedness of the weights in the network training process. This boundedness is then used to prove an almost sure convergence of the algorithm to the zero set of the gradient of the error function.