![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:英国牛津大学数学所
学位:博士
所在单位:数学科学学院
学科:计算数学
电子邮箱:wuweiw@dlut.edu.cn
扫描关注
L(p) approximation capability of RBF neural networks
点击次数:
论文类型:期刊论文
发表时间:2008-09-01
发表刊物:ACTA MATHEMATICA SINICA-ENGLISH SERIES
收录刊物:ISTIC、CSCD、SCIE、Scopus
卷号:24
期号:9
页面范围:1533-1540
ISSN号:1439-8516
关键字:neural networks; radial basis function; L(p) approximation capability
摘要:L(p) approximation capability of radial basis Function (RBF) neural networks is investigated. If g : R(+)(1) -> R(1) and g(parallel to x parallel to(n)(R)) epsilon L(loc)(p)(R(n)) with 1 <= p <= infinity, then the RBF neural networks with g as the activation function can approximate any given function in LP(K) with any accuracy for any compact set K in R(n), if and only if g(x) is not an even polynomial.