吴微

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:英国牛津大学数学所

学位:博士

所在单位:数学科学学院

学科:计算数学

电子邮箱:wuweiw@dlut.edu.cn

扫描关注

论文成果

当前位置: 吴微 >> 科学研究 >> 论文成果

L-p approximation capabilities of sum-of-product and sigma-pi-sigma neural networks

点击次数:

论文类型:期刊论文

发表时间:2007-10-01

发表刊物:INTERNATIONAL JOURNAL OF NEURAL SYSTEMS

收录刊物:SCIE、EI、PubMed、Scopus

卷号:17

期号:5

页面范围:419-424

ISSN号:0129-0657

关键字:neural networks; approximation capability; sum-of-product neural networks; sigma-pi-sigma neural networks; density

摘要:This paper studies the L-p approximation capabilities of sum-of-product (SOPNN) and sigma-pi-sigma (SPSNN) neural networks. It is proved that the set of functions that are generated by the SOPNN with its activation function in L-loc(p)(R) is dense in L-p(K) for any compact set K subset of R-N, if and only if the activation function is not a polynomial almost everywhere. It is also shown that if the activation function of the SPSNN is in L-loc(infinity)(R), then the functions generated by the SPSNN are dense in L-p(K) if and only if the activation function is not a constant (a.e.).