Hits:
Indexed by:期刊论文
Date of Publication:2012-07-27
Journal:控制与决策
Included Journals:PKU、ISTIC、CSCD、Scopus、EI
Volume:27
Issue:8
Page Number:1273-1276
ISSN No.:1001-0920
Key Words:奇异值分解;模型结构优化;PRESS统计;稀疏基选择
Abstract:针对线性参数模型的基函数选择问题,结合奇异值分解和PRESS统计提出一种模型结构优化算法.通过预先对候选基函数矩阵进行分块操作,减少非最优列间的重复比较.在此基础上,对各子块采用奇异值分解与PRESS统计相结合的方法进行选择,直接以模型的泛化能力作为目标,自适应地选择基函数.通过奇异值分解,在降低候选基函数数量的同时,使其彼此之间相互正交,有效地简化了PRESS统计的计算复杂度.仿真结果表明,所提出的方法能够有效简化模型结构,并保持较高的预测精度.