韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于AR模型和Lempel-Ziv复杂度的癫痫发作预报

点击次数:

论文类型:期刊论文

发表时间:2012-06-15

发表刊物:北京生物医学工程

收录刊物:ISTIC

卷号:31

期号:3

页面范围:273-277

ISSN号:1002-3208

关键字:癫痫;脑电信号;自回归模型;Lempel-Ziv复杂度;发作预报

摘要:目的 癫痫是由多种病因引起的慢性脑功能障碍综合征,及时的发作预报,对于建立新的治疗方法和改善患者的生活质量有着至关重要的作用.目前大部分脑电分析算法存在计算速度慢、适应性差等问题,无法满足癫痫脑电发作预报的要求.方法 本文应用自回归模型对脑电信号进行特征提取,支持向量机(support vector machine,SVM)作脑电各个时期分类器,并与Lempel-Ziv复杂度分析计算相结合,准确识别发作前期,以实现癫痫的发作预报.结果 应用弗莱堡大学数据对上述方法的有效性进行验证.仿真结果表明,该方法得到的发作漏检率、误报率较低,预报提前时间较长.结论 将AR模型和Lempel-Ziv复杂度相结合,对癫痫发作预报的实现,有一定参考价值和意义.