![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
扫描关注
基于RBFLN网络的改进RBF神经网络学习算法
点击次数:
论文类型:期刊论文
发表时间:2008-12-15
发表刊物:系统工程学报
收录刊物:PKU、ISTIC、CSCD
卷号:23
期号:6
页面范围:764-768
ISSN号:1000-5781
关键字:径向基链网络;资源分配网络;最大误差样本;相似度;材料成分
摘要:提出了一种基于径向基链网络(RBFLN)的改进径向基函数(RBF)网络学习算法.网络结构采用RB-FLN模型,添加输入层对输出层的线性映射,在训练过程中基于最大误差学习样本对资源分配网络(RAN)新性条件进行改动,在不满足新性条件时,采用相似度参数对隐层中心和宽度进行调整;而满足新性条件时,对新增隐层节点也通过类均值的方法做出相应的改进.最后通过对无机建筑材料成分分析的仿真表明该算法可有效地简化网络结构,实现样本正确分类,并获得较好的校验能力.