韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Multivariate Time Series Modeling and Prediction Based on Reservoir Independent Components

点击次数:

论文类型:会议论文

发表时间:2015-01-01

收录刊物:CPCI-S、SCIE

页面范围:325-330

关键字:reservoir; echo state network; independent component analysis; local error compensation

摘要:This paper presents a multivariate time series modeling and prediction method based on reservoir independent components. As a new type of recurrent neural networks (RNNs), reservoir computing methods have become a new hot topic and attracted wide attention from researchers in the field of time series prediction. It has overcome the problems that traditional gradient descent training algorithms present, for example, the process is computationally expensive, and easy to end in a local minimum. However, there are ill-posed solutions when least square estimation methods are used to calculate the output weights because of the collinear columns or rows in the state matrix. Therefore, we use independent component analysis (ICA) to extract the independent components of the state matrix. In addition, this paper proposes an iterative prediction model based on local error compensation to solve the problem of accumulated errors in multiple-step prediction, in order to realize medium term prediction. The models have been simulated on benchmark dataset of Lorenz time series and a real-world application of Dalian monthly average temperature-rainfall time series. Simulation results substantiate the proposed methods' effectiveness and characteristics.