韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Modified Fast Recursive Hidden Nodes Selection Algorithm for ELM

点击次数:

论文类型:会议论文

发表时间:2012-06-10

收录刊物:EI、CPCI-S、SCIE、Scopus

关键字:extreme learning machine; model selection; time series; prediction

摘要:Extreme Learning Machine (ELM) is a new paradigm for using Single-hidden Layer Feedforward Networks (SLFNs) with a much simpler training method. The input weights and the bias of the hidden layer are randomly chosen and output weights are analytically determined. One of the open problems in ELM research is how to automatically determine network architectures for given tasks. In this paper, it is taken as a model selection problem, a modified fast recursive algorithm (MFRA) is introduced to quickly and efficiently estimate the contribution of each hidden layer node to the decrease of the net function, and then a leave one out (LOO) cross validation is used to select the optimal number of hidden layer nodes. Simulation results on both artificial and real world benchmark datasets indicate the effectiveness of the proposed method.