![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Multivariate Chaotic Time Series Analysis and Prediction Using Improved Nonlinear Canonical Correlation Analysis
点击次数:
论文类型:会议论文
发表时间:2008-06-01
收录刊物:EI、CPCI-S、Scopus
页面范围:758-764
摘要:This paper proposes an improved nonlinear canonical correlation analysis algorithm named radial basis function canonical correlation analysis (RBFCCA) for multivariate chaotic time series analysis and prediction. This algorithm follows the key idea of kernel canonical correlation analysis (KCCA) method to make a nonlinear mapping of the original data sets firstly with a RBF network and a linear neural network. Then linear CCA is performed using the transformed nonlinear data sets, which corresponds to make nonlinear CCA of the original data. A modified cost function of the neural network with Lagrange multipliers and a joint learning rule based on gradient ascent algorithm which maximizes the correlation coefficient of the network outputs is used to extract the maximal correlation pattern between the input and output of a prediction model. Finally, a regression model is constructed to implement the prediction problem. The performance of RBFCCA prediction algorithm is demonstrated via the prediction problem of Lorenz time series and some practical observed time series. The results compared with the traditional neural network method and the KCCA method indicate that the RBFCCA algorithm proposed in this paper is able to capture the dynamics of complex systems and give reliable prediction accuracy.