韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

EEG signal classification for epilepsy diagnosis based on AR model and RVM

点击次数:

论文类型:会议论文

发表时间:2010-01-01

收录刊物:EI、Scopus

期号:PART 2

页面范围:134-139

摘要:In this article, we propose a new EEG signal classification method based on Relevance Vector Machine (RVM) and AR model. It can well separate the ictal EEG signals from the inter-ictal ones, this is very important in the diagnosis of epilepsy. Our studies can be divided into three parts: firstly, EEG features were extracted from the signals based on AR models, and then the performance of these features was evaluated; secondly, according to the performance of the features, feature selection was introduced between feature extraction and classifiers; finally, RVM was implemented with different AR models, different kernel widths, and different subsets of the features in order to get an overview of the method. The results indicate that: (1) features extracted based on AR models can well represent the EEG signals in the task of EEG signal classification for epilepsy diagnosis; (2) feature selection is needed between feature extraction and classifiers; (3) the method based on RVM and AR model can well differentiate the two types of EEG signals. ? 2010 IEEE.