韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A modified RBF neural network in pattern recognition

点击次数:

论文类型:会议论文

发表时间:2007-08-12

收录刊物:EI、CPCI-S、Scopus

页面范围:2526-2531

摘要:This paper presents a modified radial basis function (RBF) neural network for pattern recognition problems, which uses a hybrid learning algorithm to adaptively adjust the structure of the network. Two strategies are used to attain the compromise between the network complexity and accuracy, one is a modified "novelty" condition to create a new neuron in the hidden layer; the other is a pruning technique to remove redundant neurons and corresponding connections. To verify the performance of the modified network, two pattern recognition simulations are completed. One is a two-class pattern recognition problem, and the other is a real-world problem, internal component recognition in the field of architecture engineering. Simulation results including final hidden neurons, error, and accuracy using the method proposed in this paper are compared with performance of radial basis functional link network, resouce allocating network and RBF neural network with generalized competitive learning algorithm. And it can be concluded that the proposed network has more concise architecture, higher classifier accuracy and fewer running time.