韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Remote Sensing Image Transfer Classification Based on Weighted Extreme Learning Machine

点击次数:

论文类型:期刊论文

发表时间:2016-10-01

发表刊物:IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

收录刊物:SCIE、EI、Scopus

卷号:13

期号:10

页面范围:1405-1409

ISSN号:1545-598X

关键字:Extreme learning machine (ELM); image classification; remote sensing; transfer learning; weighted least square

摘要:It is expensive in time or resources to obtain adequate labeled data for a new remote sensing image to be categorized. The cost of manual interpretation can be reduced if labeled samples collected from previous temporal images can be reused to classify a new image over the same investigated area. However, it is reasonable to consider that the distributions of the target data and the historical data are usually not identical. Therefore, the efficient strategy transferring the beneficial information from historical images to the target image hits a bottleneck. In order to reuse sufficient historical samples to classify a given image with scarce labeled samples, this letter presents a novel transfer learning algorithm for remote sensing image classification based on extreme learning machine with weighted least square. This algorithm adds a transferring item to an objective function and adjusts historical and target training data with different weight strategies. Experiments on two sets of remote sensing images show that the presented algorithm reduces the requirement for target training samples and improves classification accuracy, timeliness, and integrity.