个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Multivariate Chaotic Time Series Prediction Based on Improved Grey Relational Analysis
点击次数:
论文类型:期刊论文
发表时间:2019-10-01
发表刊物:IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
收录刊物:SCIE
卷号:49
期号:10
页面范围:2144-2154
ISSN号:2168-2216
关键字:Correlation analysis; grey relational analysis (GRA); multivariate time series; projection principle
摘要:In multivariate chaotic time series prediction, correlation analysis is important for reducing input dimensions and improving prediction performance. Grey relational analysis (GRA) has proved to be an effective method for data correlation analysis, especially for inexact data and incomplete data. In GRA, points are usually regarded as objects, and the distance between points or the concave and convex degree are mostly used to measure the correlations. However, with discrete variables, correlation analysis results always tend to have some deviations when using prior GRA methods. Furthermore, GRA methods cannot directly use vector datasets. Therefore, in this paper, an improved GRA method is proposed based on vector projections. The input and output variables are expressed as vectors by linking two adjacent points. The vectors, instants of the points, are regarded as the objects, and the projection length of input variables to output variables is used to measure the correlations. The smaller the difference between the projection length and the input variables, the higher the correlation. Then, a hybrid variable selection and prediction model is proposed based on the improved GRA method for multivariate chaotic time series predictions, in order to overcome the negative effects of irrelevant and redundant variables caused by phase-space reconstruction. The experimental results based on the gas furnace dataset and San Francisco river runoff dataset demonstrate that the improved GRA method is effective for data correlation analysis, and the prediction accuracy is better than prior GRA-based methods.