韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel Granger causality method based on HSIC-Lasso for revealing nonlinear relationship between multivariate time series

点击次数:

论文类型:期刊论文

发表时间:2020-03-01

发表刊物:PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS

收录刊物:EI、SCIE、SSCI

卷号:541

ISSN号:0378-4371

关键字:Multivariate time series; Nonlinear system; Granger causality analysis; Hilbert-Schmidt independence criterion

摘要:The causality analysis is an important research topic in time series data mining. Granger causality analysis is a powerful method that determines cause and effect based on predictability. However, the traditional Granger causality is limited to analyzing linear causality between bivariate time series, because it is based on vector autoregressive models. In this paper, we propose a novel method, named Hilbert-Schmidt independence criterion Lasso Granger causality (HSIC-Lasso-GC), for revealing nonlinear causality between multivariate time series. Firstly, for each time series, we perform stationarity test and state space reconstruction to extract the historical information. Then, we build a HSIC-Lasso model of all input variables and output variable, where the optimal model is selected by generalized information criterion. Finally, according to the significance test, we get the causality analysis results from all input variables to output variable. In the simulations, we use two benchmark datasets and two actual datasets to test the effectiveness of the proposed method. The results show that the proposed method can effectively analyze nonlinear causality between multivariate time series. (C) 2019 Published by Elsevier B.V.