![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Online multivariate time series prediction using SCKF-gamma ESN model
点击次数:
论文类型:期刊论文
发表时间:2015-01-05
发表刊物:NEUROCOMPUTING
收录刊物:SCIE、EI
卷号:147
期号:1
页面范围:315-323
ISSN号:0925-2312
关键字:Echo state network; Multivariate time series; Online prediction; Square root cubature; Kalman filter
摘要:In this research, for online modeling and prediction of multivariate time series, we propose a novel approach termed squared root cubature Kalman filter-gamma echo state network (SCKF-gamma ESN). First, multivariate time series are modeled by using gamma echo state network (gamma ESN). Then, by using squared root cubature Kalman filter (SCKF), we update parameters of gamma ESN and predict future observations online. Furthermore, we add a robust outlier detection algorithm to SCKF to protect SCKF-gamma ESN from divergence caused by outliers. Finally, two numerical examples, by using a multivariate benchmark dataset and a real-world dataset, are conducted to substantiate the effectiveness and characteristics of the proposed SCKF-gamma ESN. (C) 2014 Elsevier B.V. All rights reserved.