韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Partial Lanczos extreme learning machine for single-output regression problems

点击次数:

论文类型:期刊论文

发表时间:2009-08-01

发表刊物:NEUROCOMPUTING

收录刊物:EI、SCIE、Scopus

卷号:72

期号:13-15

页面范围:3066-3076

ISSN号:0925-2312

关键字:Extreme learning machine; Lanczos bidiagonalization; Singular value decomposition; Regularization; Generalized cross validation

摘要:There are two problems preventing the further development of extreme learning machine (ELM). First, the ill-conditioning of hidden layer output matrix reduces the stability of ELM. Second, the complexity of singular value decomposition (SVD) for computing Moore-Penrose generalized inverse limits the learning speed of ELM. For these two problems, this paper proposes the partial Lanczos ELM (PL-ELM) which employs the hybrid of partial Lanczos bidiagonalization and SVD to compute output weights. Experimental results indicate that, compared with ELM, PL-ELM not only effectively improves the stability and generalization performance but also raises the learning speed. (C) 2009 Elsevier B.V. All rights reserved.