![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Partial Lanczos extreme learning machine for single-output regression problems
点击次数:
论文类型:期刊论文
发表时间:2009-08-01
发表刊物:NEUROCOMPUTING
收录刊物:EI、SCIE、Scopus
卷号:72
期号:13-15
页面范围:3066-3076
ISSN号:0925-2312
关键字:Extreme learning machine; Lanczos bidiagonalization; Singular value decomposition; Regularization; Generalized cross validation
摘要:There are two problems preventing the further development of extreme learning machine (ELM). First, the ill-conditioning of hidden layer output matrix reduces the stability of ELM. Second, the complexity of singular value decomposition (SVD) for computing Moore-Penrose generalized inverse limits the learning speed of ELM. For these two problems, this paper proposes the partial Lanczos ELM (PL-ELM) which employs the hybrid of partial Lanczos bidiagonalization and SVD to compute output weights. Experimental results indicate that, compared with ELM, PL-ELM not only effectively improves the stability and generalization performance but also raises the learning speed. (C) 2009 Elsevier B.V. All rights reserved.