韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

应用递归神经网络学习周期运动吸引子轨迹

点击次数:

论文类型:期刊论文

发表时间:2006-08-30

发表刊物:控制理论与应用

收录刊物:EI、PKU、ISTIC、CSCD、Scopus

卷号:23

期号:4

页面范围:497-502

ISSN号:1000-8152

关键字:递归神经网络;周期吸引子;泛化能力

摘要:采用递归神经网络学习非线性周期运动的吸引子轨迹.网络的拓扑结构基于非线性系统的状态空间表达式,网络权值通过时序反向传播算法调整.探讨了不同样本轨迹和网络结构对递归神经网络预测性能的影响.神经网络的性能评估建立在多条测试样本轨迹的基础上,可以更为客观地评价递归神经网络预测性能.对van derPol方程的仿真结果表明:网络的泛化能力对训练样本轨迹的依赖性较强,从不同训练轨迹上得到的递归神经网络性能差异较大;需要选择合适的递归神经网络结构参数以提高神经网络的泛化能力.