韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于Adaboost算法的回声状态网络预报器

点击次数:

论文类型:期刊论文

发表时间:2011-04-15

发表刊物:控制理论与应用

收录刊物:EI、PKU、ISTIC、CSCD、Scopus

卷号:28

期号:4

页面范围:601-604

ISSN号:1000-8152

关键字:ESN Adaboost.RT算法 非线性时间序列 预测

摘要:把单个回声状态网络(echo state network,ESN)的预测模型作改进,对整体ESN预测精度的提高是有限的.针对以上问题,本文考虑整体ESN.首先利用Adaboost算法提升单个ESN的泛化性能及预测精度,并且根据Adaboost算法的结果,建立一种ESN预报器(Adaboost ESN,ABESN).这个ESN预报器根据拟合误差不断修正训练样本的权重,拟合误差越大,训练样本权重值就越大;因此,它在下一次迭代时,就会侧重在难以学习的样本.把单个ESN的预测模型经过加权,然后按照加法组合在一起,形成最终的ESN预测模型.将该预测模型应用于太阳黑子、Mackey-Glass时间序列的预测研究.仿真结果表明所提出的预测模型在实际时间序列预测领域的有效性.