![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
扫描关注
基于小波变换和AdaBoost极限学习机的癫痫脑电信号分类
点击次数:
论文类型:期刊论文
发表时间:2015-09-10
发表刊物:计算机应用
收录刊物:PKU、ISTIC、CSCD
卷号:35
期号:9
页面范围:2701-2705,2709
ISSN号:1001-9081
关键字:AdaBoost;极限学习机;小波变换;互信息;脑电信号分类
摘要:针对单一极限学习机(ELM)在癫痫脑电信号研究中分类结果不稳定、泛化能力差的缺陷,提出一种基于互信息(MI)的AdaBoost极限学习机分类算法.该算法将AdaBoost引入到极限学习机中,并嵌入互信息输入变量选择,以强学习器最终的性能作为评价指标,实现对输入变量以及网络模型的优化.利用小波变换(WT)提取脑电信号特征,并结合提出的分类算法对UCI脑电数据集以及波恩大学癫痫脑电数据进行分类.实验结果表明,所提方法相比传统方法以及其他同类型研究,在分类精度和稳定性上有着明显提高,并具有较好的泛化性能.