韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于极端学习机的多变量混沌时间序列预测

点击次数:

论文类型:期刊论文

发表时间:2012-04-23

发表刊物:物理学报

收录刊物:PKU、ISTIC、CSCD

卷号:61

期号:8

页面范围:97-105

ISSN号:1000-3290

关键字:混沌时间序列预测;输入变量选择;极端学习机;模型选择

摘要:针对多变量混沌时间序列预测问题,提出了一种基于输入变量选择和极端学习机的预测模型.其基本思想是对多变量混沌时间序列进行相空间重构后,采用互信息方法选择与预测输出统计相关最高的重构输入变量,借助极端学习机的通用逼近能力建立多变量混沌时间序列的预测模型.为进一步提高预测精度,采用模型选择算法选择具有最小期望风险的极端学习机预测模型.基于Lorenz,R6ssler多变量混沌时间序列及R6ssler超混沌时间序列的仿真结果证明所提方法的有效性.