|
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:
电子邮箱:
扫描关注
- [71]韩敏.An adaptive unimodal subclass decomposition (AUSD) learning system for land use and land cover classification using high-resolution remote sensing[J],GIScience & Remote Sensing,2016,54(1):20-37
- [72]秦攀.韩敏.Python编程语言在智能建模与数据挖掘方向毕业设计指导中的应用[J],教育与教学研究文集,2016,29(1):21-24
- [73]许美玲.韩敏.L1/2 Norm Regularized Echo State Network for Chaotic Time Series Prediction[A],2016:12-19
- [74]韩敏.Finite-time function projective synchronization of unknown Cohen-Grossberg neural networks with time delays and stochastic disturbance[A],2016:750-755
- [75]Han, Min.Han, M (reprint author), Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116023, Peoples R China..Zhang, Meng,Zhang, Yamei.Projective synchronization between two delayed networks of different sizes with nonidentical nodes and unknown parameters[J],NEUROCOMPUTING,2016,171:605-614
- [76]Zhao, Jingying.Zhao, JY (reprint author), Dalian Univ Technol, Fac Elect Informat & Elect Engn, 2 Linggong Rd, Dalian 116024, Peoples R China.; Zhao, JY (reprint author), Dalian Nationalities Univ, Coll Comp Sci & Engn, 18 Liaohe West Rd, Dalian 116600, Peoples R China..Han, Min.An efficient model for the prediction of polymerisation efficiency of nano-composite film using Gaussian processes and Pearson VII universal kernel[J],INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY,2016,52(3-4,SI):226-237
- [77]Han, Min.Zhang, Yamei.Finite-Time Topology Identification Function Projective Synchronization of Cohen-Grossberg Neural Networks with Time Delays and Stochastic Disturbance[A],2016:750-755
- [78]Xu, Meiling.Kanae, Shunshoku,Han, Min.L-1/2 Norm Regularized Echo State Network for Chaotic Time Series Prediction[A],2016,9949:12-19
- [79]Eressa, Muluken Regas.Zheng, Danchen,Han, Min.PID and Neural Net Controller Performance Comparsion in UAV Pitch Attitude Control[A],2016:762-767
- [80]Ren, Weijie.Wang, Dan,Li, Tieshan,Han, Min,Wang, Lun.Efficient Feature Extraction Framework for EEG Signals Classification[A],2016:167-172
