邱文亮

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:土木工程系

学科:桥梁与隧道工程

办公地点:大连理工大学桥隧研发基地302

联系方式:13842877202

电子邮箱:qwl@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Stability analysis of special-shape arch bridge

点击次数:

论文类型:期刊论文

发表时间:2010-12-01

发表刊物:Tamkang Journal of Science and Engineering

收录刊物:EI、Scopus

卷号:13

期号:4

页面范围:365-373

ISSN号:15606686

摘要:This paper presents a stability investigation of a special-shape arch bridge with a span of 180 m. Its structure and mechanics are significantly different from normal arch bridges because of its single arch rib skewing across the girder, its hangers hanging unevenly along the arch rib with different aslant angle, and its arch rib being subjected to massive axial compression force, bending moment, torque, and shear stress. In this paper, the eigenvalue method is used to analyze some of the main influencing factors, such as different loads, restraint conditions of arch spring, stiffness of arch rib, stiffness of main girder and rise-span ratio of arch rib. The study results showed that the slant hangers at both sides of the girder reduced the tendency of arch instability, which is obviously helpful to maintain overall structural stability. Increasing the height of the main girder can improve the structural stability, but the effect is limited. The restrained conditions of the arch spring markedly influence the overall structural stability, and the stability coefficient of a fixed arch is more than twice the coefficient of a two-hinge arch. The rise-span ratio has a relatively large impact on the stability coefficient. A reasonable rise-span ratio for the special-shape arch bridge studied here is around 0.37 that is larger than an expected ratio for a normal arch bridge obtained in existed studies. The impacts of vertical flexural stiffness and lateral flexural stiffness of the arch rib on the structural stability are determined by the mode of buckling, and the lateral flexural stiffness has nearly no impact on the structural stability for an in-plane buckling arch.