location: Current position: Home >> Scientific Research >> Paper Publications

Metal-organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent

Hits:

Indexed by:期刊论文

Date of Publication:2015-02-01

Journal:JOURNAL OF POROUS MATERIALS

Included Journals:SCIE、EI

Volume:22

Issue:1

Page Number:247-259

ISSN No.:1380-2224

Key Words:Metal-organic framework; Ionic liquid; Encapsulation; Chemical behaviour

Abstract:Ionic liquid hybrid MOFs composite materials, copper-based metal-organic frameworks HKUST-1 as porous matrix was used to encapsulate amino-functionalized basic ionic liquid (ABIL) catalyst by post-synthetic modification strategy under different solvents such as H2O, ethanol and N,N-dimethylformamide. A series of characterization techniques such as PXRD, SEM, N-2 physical adsorption-desorption, ICP-OES, element analysis, FT-IR, DRS UV-Vis, XPS and TGA were employed to probe the textural properties, surface characteristics, variations in coordination environment of metal center and thermal stability of as-synthesized catalysts. Furthermore, the Knoevenagel condensation of benzaldehyde and malononitrile was used as a probe reaction to evaluate their catalytic performances. It was interesting to find that the chemical behaviour of ABIL dissolved in these solvent had a profound impact on synthesis of catalysts and their catalytic performances. In the weak alkaline and neutral environment, ABIL can be dissolved as molecular state and be well confined inside HKUST-1 nanocavities via Cu-NH2 coordination bond. In particular, the alkalinity of ABIL dissolved ethanol solvent was the optimal environment for encapsulation of ABIL organocatalyst, and the as-synthesized heterogeneous catalyst demonstrated favourable structural property and excellent catalytic performance.

Pre One:Hollow Tin Dioxide Microspheres With Multilayered Nanocrystalline Shells for Pseudocapacitor

Next One:反应器中化学反应热释放的时空规律