location: Current position: Home >> Scientific Research >> Paper Publications

Lipase Immobilization onto the Surface of PGMA-b-PDMAEMA-grafted Magnetic Nanoparticles Prepared via Atom Transfer Radical Polymerization

Hits:

Indexed by:期刊论文

Date of Publication:2014-11-01

Journal:CHINESE JOURNAL OF CHEMICAL ENGINEERING

Included Journals:SCIE、EI、ISTIC、Scopus

Volume:22

Issue:11-12

Page Number:1333-1339

ISSN No.:1004-9541

Key Words:Enzyme; Atom transfer radical polymerization; Immobilized lipase; Fe3O4 nanoparticles

Abstract:A block copolymer of 2-dimethylaminoethyl methacrylate (DMAEMA) and glycidyl methacrylate (GMA) was grafted onto the surface of magnetic nanoparticles (Fe3O4) via atom transfer radical polymerization. The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1% under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher pH stability than the free lipase at pH 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over 55% of its initial activity. (C) 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.

Pre One:New bifunctional-pullulan-based micelles with good biocompatibility for efficient co-delivery of cancer-suppressing p53 gene and doxorubicin to cancer cells

Next One:Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis