个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:生物工程学院
学科:生物化工. 生物化学与分子生物学. 生物工程与技术
办公地点:大连理工大学生物工程楼323;盘锦校区D06 302室
联系方式:E-mail:biosci@dlut.edu.cn Tel:13332280036
电子邮箱:biosci@dlut.edu.cn
Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124.
点击次数:
论文类型:期刊论文
发表时间:2018-01-13
发表刊物:Extremophiles : life under extreme conditions
收录刊物:SCIE、PubMed
卷号:22
期号:2
页面范围:287-300
ISSN号:1433-4909
关键字:Cold-adapted lipase,Organic solvent tolerant,Psychrobacter sp.,Psychrophilic bacterium
摘要:By screening 25 different psychrophilic strains isolated from the Arctic habitat, we isolated a strain capable of producing lipase. We identified this strain as Psychrobacter sp. ZY124 based on the amplified 16S rDNA sequence. The lipase, named as Lipase ZC12, produced from the supernatant of Psychrobacter sp. ZY124 cultured at 15°C was purified to homogeneity by ammonium sulfate precipitation followed by Phenyl Sepharose FF gel hydrophobic chromatography. Based on the obtained amino acid sequence, Lipase ZC12 is classified as a member of the Proteus/psychrophilic subfamily of lipase family I.1; it has a molecular weight of 37.9kDa. We also determined that the apparent optimum temperature for Lipase ZC12 activity is 40°C. Lipase ZC12 shows remarkable organic solvent tolerance by remaining more 50% after incubated with 10-90% different organic solvents. In addition, acyl chain esters with C12 or longer were confirmed to be preferable substrates for Lipase ZC12. Lipase ZC12 also shows better stereoselectivity for (R, S)-1-phenylethanol chiral resolution in n-hexane solvent with (S)-1-phenylethanol (eep 92%) and conversion rate (39%) by transesterification reactions. These properties may provide potential applications in biocatalysis and biotransformation in non-aqueous media, such as in detergent, transesterification or esterification and chiral resolution.