包永明

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:生物工程学院

学科:生物化工. 生物化学与分子生物学. 生物工程与技术

办公地点:大连理工大学生物工程楼323;盘锦校区D06 302室

联系方式:E-mail:biosci@dlut.edu.cn Tel:13332280036

电子邮箱:biosci@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Metabolic engineering of Bacillus sp for diacetyl production

点击次数:

论文类型:期刊论文

发表时间:2017-07-01

发表刊物:PROCESS BIOCHEMISTRY

收录刊物:SCIE、EI、Scopus

卷号:58

页面范围:69-77

ISSN号:1359-5113

关键字:Bacillus; Diacetyl; Metabolic engineering; Acetoin; alpha-Acetolactate decarboxylase; alpha-Acetolactate synthase

摘要:Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of alpha-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of alpha-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-Delta alsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed alpha-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-Delta alsD-alsS, which produced 4.02 g/L alpha-acetolactate and 1.94 g/L diacetyl, and the conversion from alpha-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-Delta alsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food safe bacteria.