location: Current position: Home >> Scientific Research >> Paper Publications

A Novel Platelet-Repellent Polyphenolic Surface and Its Micropattern for Platelet Adhesion Detection

Hits:

Indexed by:期刊论文

Date of Publication:2016-10-12

Journal:ACS APPLIED MATERIALS & INTERFACES

Included Journals:SCIE、EI、PubMed、Scopus

Volume:8

Issue:40

Page Number:26570-26577

ISSN No.:1944-8244

Key Words:platelet-repellent surfaces; polyphenols; micropattern; platelet adhesion detection; antiplatelet drug

Abstract:Surface patterning provides a powerful tool to the diagnosis of platelet adhesion. However, the current methodologies of constructing platelet-patterned surfaces require laborious and complicated steps. Herein, a novel and simple platelet-repellent surface was reported by metal (Fe3+ ions)-polyphenol (tannic acid, TA) coordination interaction. The platelet repellent effect was significantly better than that of poly(ethylene glycol) (PEG) in a long-term. Moreover, the platelet-repellent behavior could extend to other polyphenols-functionalized surfaces. On the basis of these observations, a TA-based micropattern was fabricated in situ by one-step microcontact printing for well-defined platelet adhesion, which can effectively avoid the traditional introduction of inert hydrophilic polymers and bioactive ligands. Afterward, the TA-based micropattern was applied to monitor the adhesion of defective platelets treated with an antiplatelet drug (tirofiban). This work provided a facile, versatile, and environmentally friendly strategy to construct platelet-repellent polyphenolic surfaces and their micropattern. We expect that this simple micropattern could act as a low-cost and label-free platform for biomaterials and biosensors, and could be widely used in the clinical diagnoses of platelet adhesive functions and-the evaluation of antiplatelet therapies.

Pre One:Characterization of non-specific protein adsorption induced by triazole groups on the chromatography media using Cu (I)-catalyzed alkyne-azide cycloaddition reaction for ligand immobilization

Next One:Rapid Covalent Immobilization of Proteins by Phenol-Based Photochemical Cross-Linking