个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 系统工程
办公地点:电信学部大黑楼A0612房间
联系方式:Tel:0411-84707580
电子邮箱:wangwei@dlut.edu.cn
Construction of prediction intervals for gas flow systems in steel industry based on granular computing
点击次数:
论文类型:期刊论文
发表时间:2018-09-01
发表刊物:CONTROL ENGINEERING PRACTICE
收录刊物:SCIE
卷号:78
页面范围:79-88
ISSN号:0967-0661
关键字:Steel industry; Byproduct gas; Long-term prediction; Prediction intervals
摘要:Understanding the future flow variation of byproduct gas is very crucial for energy scheduling in steel industry. An accurate prediction of the tendencies is significantly beneficial for raising the economic profits of steel enterprise. Given that most existing techniques focus on short term or numeric prediction that can hardly meet the practical requirements on the predicting horizon, the guidance effect of the results imposing on energy scheduling is limitative. In this study, a granular computing (GrC)-based method for the construction of prediction intervals (PIs) is proposed, which considers semantic features of the gas flows and granulate the data so as to form a number of unequal-length granules on the horizontal axis. Dynamic time warping technique is then deployed to equalize the granules' lengths. As for the longitudinal (amplitudes of gas flows) granular expansion, one can regard the data amount covered by the granulation as an objective to optimize the allocation of information granularity for constructing PIs. To verify the performance of the proposed GrC-based approach, this study exhibits a series of comparative experiments by using the practical industrial data, and the developed prediction system is also applied in the energy center of Baosteel Co. Ltd. The results indicate that the application system presents high accuracy and can provide an effective guidance for balancing and scheduling of the byproduct energy.