个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 系统工程
办公地点:电信学部大黑楼A0612房间
联系方式:Tel:0411-84707580
电子邮箱:wangwei@dlut.edu.cn
A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry
点击次数:
论文类型:期刊论文
发表时间:2016-07-01
发表刊物:CONTROL ENGINEERING PRACTICE
收录刊物:SCIE、EI
卷号:52
页面范围:35-45
ISSN号:0967-0661
关键字:Oxygen/nitrogen system; Granular-Computing; Long-term prediction; Scheduling
摘要:As essential energy resources in steel industry, oxygen and nitrogen are massively utilized in many production procedures, such as iron-making by blast furnaces, steel-making by converters, etc. The trends of the energy generation/consumption flows along with the related scheduling works play a pivotal role on the energy management of steel enterprises. Aiming at an oxygen/nitrogen system of a steel plant in China, a two-stage predictive scheduling method is proposed in this study for resolving the optimal energy decision-making problem. Given the high cost of time consuming on the load change of air separation units (ASU) of the oxygen/nitrogen system, a Granular-Computing (GrC)-based prediction model is firstly established at the stage of prediction, which extends the predicting length to even a day based on data segment rather than generic point-wise mode. At the stage of optimal scheduling, a mixed-integer program model is constructed on the basis of constraining the number of adjustable energy units, which considers not only the actual capacity of the energy devices, but the practical energy conversion procedure as well. The experiments employing the real data coming from this plant also involve two stages, the long-term prediction and the energy scheduling, and the experimental results exhibit both satisfactory accuracy and practicability. Furthermore, the results of system application also indicate the effectiveness of the proposed method. (C) 2016 Elsevier Ltd. All rights reserved.