邵诚

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东北大学

学位:博士

所在单位:控制科学与工程学院

学科:控制理论与控制工程. 运筹学与控制论

办公地点:创新园大厦A座722室

电子邮箱:cshao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于神经网络优化的迭代学习控制方法的研究及应用

点击次数:

论文类型:期刊论文

发表时间:2006-03-25

发表刊物:吉林化工学院学报(自然科学版)

卷号:23

期号:1

页面范围:50-55

ISSN号:1007-2853

关键字:迭代学习控制;神经网络;参数优化;聚合反应

摘要:聚合反应的动态特性具有时变性、非线性等特点,应用传统的控制方法已不能满足实际的控制要求,且达不到需要的控制精度,急需提出一种先进的控制方法.本文提出了一种新的基于神经网络优化的迭代学习控制方法,介绍了由迭代学习控制理论设计迭代学习控制器,提出用神经网络对控制器参数进行优化计算,找出最优的学习增益;并将该方法应用于ABS树脂聚合反应过程的温度控制中,仿真结果表明了该方法的有效性,且能在较少的迭代次数下,以最快的收敛速度、较高的跟踪精度逼近期望轨迹.