![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:控制理论与控制工程. 运筹学与控制论
办公地点:创新园大厦A座722室
电子邮箱:cshao@dlut.edu.cn
Data-driven optimal PID type ILC for a class of nonlinear batch process
点击次数:
论文类型:期刊论文
发表时间:2021-03-05
发表刊物:INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
卷号:52
期号:2
页面范围:263-276
ISSN号:0020-7721
关键字:Iterative learning control (ILC); PID iterative learning control; data driven ILC; optimal ILC
摘要:The paper presents model-free proportional-integral-derivative (PID) type iterative learning control (ILC) approach for the nonlinear batch process. The dynamic linearisation method is considered, which uses the input-output (I/O) measurements to update the model at each iteration. Based on the newly updated model and error information of the previous iteration, optimal PID gains are updated iteratively. The quadratic performance index is employed to optimise the parameters of the PID controller, and then an optimal PID type data-driven iterative learning control (DDILC) scheme is established for nonlinear batch process. The convergence analysis of optimal PID type DDILC is also discussed which can be enhanced by the proper choice of penalty matrices. Simulation examples are also given to demonstrate the effectiveness of the proposed scheme.