邵诚

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东北大学

学位:博士

所在单位:控制科学与工程学院

学科:控制理论与控制工程. 运筹学与控制论

办公地点:创新园大厦A座722室

电子邮箱:cshao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于奇异值分解的PID型参数优化迭代学习控制算法

点击次数:

发表时间:2014-01-01

发表刊物:信息与控制

期号:4

页面范围:483-489

ISSN号:1002-0411

摘要:We propose a PIID (propoition-integral ion-differentiation) parameter optimal iterative learning control algorithm based on singular value decomposition to solve the tracking control problems of discrete linear systems. The traditional parameter optimal iterative learning control algorithm can guarantee tracking errors converging to zero only under the condition that the original plant is positive-defined. In order to overcome this limitation, the proposed algorithm establishes the norm optimal performance index and obtains the learning gain matrix by applying singular value decomposition to the original plant. The algorithm guarantees that the closed-loop tracking errors of this algorithm converge monotonously to zero even when the original plant is non- positive. We apply a I'll) controller to the design of parameter optimal iterative learning control to improve the learning efficiency of this algorithm. Theoretical analysis and relevant proof of the convergence properties of this algorithm are also given. The result of the simulation verifies the effectiveness of the proposed algorithm.

备注:新增回溯数据