邵诚

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东北大学

学位:博士

所在单位:控制科学与工程学院

学科:控制理论与控制工程. 运筹学与控制论

办公地点:创新园大厦A座722室

电子邮箱:cshao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于Hammerstein-Wiener模型的连续搅拌反应釜神经网络预测控制

点击次数:

发表时间:2011-01-01

发表刊物:化工学报

期号:8

页面范围:2275-2280

ISSN号:0438-1157

摘要:A model predictive control strategy based on neural network is presented for a continuous stirred tank reactor(CSTR). A segmentation method was adopted to identify Hammerstein-Wiener model coefficient by least squares support vector machines and then to construct a nonlinear predictive controller which was by a linear optimal component and radial basis function neural networks in series. A nonlinear predictive control algorithm based on least support vector machines Hammerstein-Wiener model was realized by using BP neural network to train predictive input sequences and to solve nonlinear predictive control rules by Quasi-Newton method. The simulation results of CSTR illustrate that this approach is effective tracking and controlling product concentration. © All Rights Reserved.

备注:新增回溯数据