location: Current position: Home >> Scientific Research >> Paper Publications

Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor

Hits:

Indexed by:期刊论文

Date of Publication:2013-11-01

Journal:JOURNAL OF ENVIRONMENTAL SCIENCES

Included Journals:SCIE、EI、PubMed、ISTIC、Scopus

Volume:25

Issue:11

Page Number:2239-2246

ISSN No.:1001-0742

Key Words:nitric oxide; denitrification; hollow-fiber membrane bioreactor; biofilm

Abstract:A hollow-fiber membrane bioreactor (HMBR) was studied for its ability to treat nitric oxide (NO) from simulated flue gas. The HMBR was operated for 9 months and showed a maximum elimination capacity of 702 mg NO/(m(2).day) with a removal efficiency of 86% (gas residence time of 30 sec, inlet NO concentration of 2680 mg/m(3), pH 8). Varying operation parameters were tested to determine the stability and response of the HMBR. Both the inlet NO concentration and gas residence time influenced the removal of NO in the HMBR. NO elimination capacity increased with an increase in inlet NO concentration or a shortening of gas residence time. Higher removal efficiency of NO was obtained at a longer gas residence time or a lower inlet NO concentration. Microbial communities of the HMBR were sensitive to the variation in pH value and alkalescence corresponding to an optimum pH value of 8. In addition, NO elimination capacity and removal efficiency were inversely proportional to the inlet oxygen concentration. Sulfur dioxide had no great influence on elimination capacity and removal efficiency of NO. Product analysis was performed to study N2O and N-2 production and confirmed that the majority of the microorganisms were denitrifying bacteria in the HMBR. Compared to other bioreactors treating NO, this study showed that the denitrifying HMBR was a good option for the removal of NO.

Pre One:燃料灰吸附-再生处理氮杂环化合物废水的性能研究

Next One:Effects of carbon-nitrogen ratio on nitrogen removal in a sequencing batch reactor enhanced with low-intensity ultrasound