个人信息Personal Information
副教授
硕士生导师
主要任职:环境学院副院长
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:环境学院
学科:环境工程
办公地点:环境楼B711
联系方式:jruofei@dlut.edu.cn
电子邮箱:jruofei@dlut.edu.cn
Cotransport of biochar and Shewanella oneidensis MR-1 in saturated porous media: Impacts of electrostatic interaction, extracellular electron transfer and microbial taxis
点击次数:
论文类型:期刊论文
发表时间:2019-03-25
发表刊物:SCIENCE OF THE TOTAL ENVIRONMENT
收录刊物:SCIE、PubMed、Scopus
卷号:658
页面范围:95-104
ISSN号:0048-9697
关键字:Biochar; Shewanella; Cotransport; EET; Redox state; Taxis
摘要:Biochar widely applied to soil can influence microbial community composition and participate in extracellular electron transfer (EET). However, little is known about the cotransport behaviors of bacteria and biochar in aquifer and soil-water environments, which can affect the fate and application performance of biochar. In this study, we found that in comparison to their individual transport behaviors, the mobilities of cotransporting Shewanella oneidensis MR-1 and biochar colloid (BC) were significantly inhibited. The decreasing colloidal mobilities at higher ionic strengths signified the importance of electrostatic interaction between cell and BC in cotransport. Moreover, the less suppressed cotransport of BC and mutants defective of EET and the elevated inhibition effects on cotransport by adding exogenous electron donor suggested the importance of EET. Difference in cotransport behavior was also observed with BC having different redox states. Compared with oxidized BC, reduced BC with higher hydrophobicity led to easier aggregation with cell and higher retention in column. More importantly, MR-1 exhibited EET-dependent taxis towards biochar, which also contributed to the enhanced heteroaggregation and decreased mobilities of cell and biochar. Our results highlight that metabolic activities of microbes towards abiotic colloids cannot be neglected when assessing their transport behaviors, especially in subsurface environments abounded with redox-active inorganic particles and microbes performing extracellular respiration. (C) 2018 Elsevier B.V. All rights reserved.